CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Novel Method for Three-Dimensional Culture of Central Nervous System Neurons.

Till B. Puschmann ; Yolanda de Pablo ; Carl Zandén (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Milos Pekny
Tissue engineering. Part C, Methods (1937-3392). Vol. 20 (2014), 6, p. 485-492.
[Artikel, refereegranskad vetenskaplig]

Neuronal signal transduction and communication in vivo is based on highly complex and dynamic networks among neurons expanding in a three-dimensional (3D) manner. Studies of cell-cell communication, synaptogenesis, and neural network plasticity constitute major research areas for understanding the involvement of neurons in neurodegenerative diseases, such as Huntington's, Alzheimer's, and Parkinson's disease, and in regenerative neural plasticity responses in situations, such as neurotrauma or stroke. Various cell culture systems constitute important experimental platforms to study neuronal functions in health and disease. A major downside of the existing cell culture systems is that the alienating planar cell environment leads to aberrant cell-cell contacts and network formation and increased reactivity of cell culture-contaminating glial cells. To mimic a suitable 3D environment for the growth and investigation of neuronal networks in vitro has posed an insurmountable challenge. Here, we report the development of a novel electrospun, polyurethane nanofiber-based 3D cell culture system for the in vitro support of neuronal networks, in which neurons can grow freely in all directions and form network structures more complex than any culture system has so far been able to support. In this 3D system, neurons extend processes from their cell bodies as a function of the nanofiber diameter. The nanofiber scaffold also minimizes the reactive state of contaminating glial cells.

Denna post skapades 2014-04-01. Senast ändrad 2014-09-03.
CPL Pubid: 196045


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering (2006-2016)
Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Klinisk medicin

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Functional Fiber Based Materials for Microsystem Applications