CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Generating Constrained Random Data with Uniform Distribution

Koen Claessen (Institutionen för data- och informationsteknik, Programvaruteknik (Chalmers)) ; Jonas Duregård (Institutionen för data- och informationsteknik, Programvaruteknik (Chalmers)) ; Michal H. Palka (Institutionen för data- och informationsteknik, Programvaruteknik (Chalmers))
Lecture Notes in Computer Science: 12th International Symposium on Functional and Logic Programming (FLOPS), Kanazawa, JAPAN, Jun 04-06, 2014 (0302-9743). Vol. 8475 (2014), p. 18-34.
[Konferensbidrag, refereegranskat]

We present a technique for automatically deriving test data generators from a predicate expressed as a Boolean function. The distribution of these generators is uniform over values of a given size. To make the generation efficient we rely on laziness of the predicate, allowing us to prune the space of values quickly. In contrast, implementing test data generators by hand is labour intensive and error prone. Moreover, handwritten generators often have an unpredictable distribution of values, risking that some values are arbitrarily underrepresented. We also present a variation of the technique where the distribution is skewed in a limited and predictable way, potentially increasing the performance. Experimental evaluation of the techniques shows that the uniform derived generators are much easier to define than hand-written ones, and their performance, while lower, is adequate for some realistic applications.

Denna post skapades 2014-03-28. Senast ändrad 2015-04-27.
CPL Pubid: 195847


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för data- och informationsteknik, Programvaruteknik (Chalmers)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Random Structured Test Data Generation for Black-Box Testing