CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Generalized Hunter–Saxton equations, optimal information transport, and factorization of diffeomorphisms

Klas Modin (Institutionen för matematiska vetenskaper, matematik)
Journal of Geometric Analysis (1050-6926). Vol. 25 (2015), 2, p. 1306-1334.
[Artikel, refereegranskad vetenskaplig]

We study geodesic equations for a family of right-invariant Riemannian metrics on the group of diffeomorphisms of a compact manifold. The metrics descend to Fisher’s information metric on the space of smooth probability densities. The right reduced geodesic equations are higher-dimensional generalizations of the μ-Hunter–Saxton equation, used to model liquid crystals under the influence of magnetic fields. Local existence and uniqueness results are established by proving smoothness of the geodesic spray.

The descending property of the metrics is used to obtain a novel factorization of diffeomorphisms. Analogous to the polar factorization in optimal mass transport, this factorization solves an optimal information transport problem. It can be seen as an infinite-dimensional version of QR factorization of matrices.

Nyckelord: Euler-Arnold equations; Euler-Poincare equations; Descending metrics; Riemannian submersion; Diffeomorphism groups; Fisher information metric; Fisher-Rao metric; Entropy differential metric; Geometric statistics; Hunter-Saxton equation; Information geometry; Optimal transport; Polar factorization; QR factorization; Cholesky factorization; Calabi metric



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-03-27. Senast ändrad 2015-04-20.
CPL Pubid: 195773

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Informations- och kommunikationsteknik
Matematisk analys
Geometri

Chalmers infrastruktur