CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways

Juan Octavio Valle Rodriguez (Institutionen för kemi- och bioteknik, Systembiologi) ; Shuobo Shi (Institutionen för kemi- och bioteknik, Systembiologi) ; Verena Siewers (Institutionen för kemi- och bioteknik, Systembiologi) ; Jens B. Nielsen (Institutionen för kemi- och bioteknik, Systembiologi)
Applied Energy (0306-2619). Vol. 115 (2014), p. 226-232.
[Artikel, refereegranskad vetenskaplig]

Microbial production of fatty acid derived chemicals and fuels is currently of great interest due to the limited resources and increasing prices of petroleum and petroleum-based products. The development of Saccharomyces cerevisiae as a fatty acid ethyl ester (FAEE) cell factory would represent an opportunity for biodiesel production due to its successful history in the biotechnology area. However, fatty acid (FA) biosynthesis is highly regulated and usually not high enough for developing an efficient production process. In S. cerevisiae, FAs are degraded by beta-oxidation and a large fraction is utilized to synthesize steryl esters (SEs) and triacylglycerols (TAGs), which are not essential for the cell. Here, by eliminating nonessential FA utilization pathways, we developed a metabolic engineering strategy resulting in a S. cerevisiae strain that can overproduce FAs and in turn use these for producing FAEEs (biodiesel). Compared to the wild-type, there is an about 3-fold increase in free FA content in a strain devoid of both TAG and SE formation, a 4-fold increase in free FA content in a strain that is incapable of beta-oxidation, and a 5-fold increase of free FAs in a strain lacking all of these non-essential FA utilization pathways. It is also demonstrated that there are similar positive effects on FAEE production in these deletion strains. The highest production of FAEEs is 17.2 mg/l in the strain in which all these pathways were blocked. The results of this study serve as a basis for further strategies to improve the production of FA derivatives in S. cerevisiae. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Nyckelord: Advanced biofuel, Biodiesel, Metabolic engineering, Saccharomyces, cerevisiae, Triacylglycerols, Steryl esters, biodiesel production, escherichia-coli, wax ester, functional, expression, lipid-accumulation, gene disruption, yeast, biosynthesis, acyltransferase, fuels



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-03-14. Senast ändrad 2017-01-17.
CPL Pubid: 195006

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Systembiologi (2008-2014)

Ämnesområden

Livsvetenskaper
Kemi

Chalmers infrastruktur

 


Projekt

Denna publikation är ett resultat av följande projekt:


Industrial Systems Biology of Yeast and A. oryzae (INSYSBIO) (EC/FP7/247013)