CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES

S. Ertel ; J. P. Marshall ; J. C. Augereau ; A. V. Krivov ; T. Lohne ; C. Eiroa ; A. Mora ; C. del Burgo ; B. Montesinos ; G. Bryden ; W. Danchi ; F. Kirchschlager ; René Liseau (Institutionen för rymd- och geovetenskap, Radioastronomi och astrofysik) ; J. Maldonado ; G. L. Pilbratt ; C. Schuppler ; P. Thebault ; G. J. White ; S. Wolf
Astronomy and Astrophysics (0004-6361). Vol. 561 (2014), p. Article no. A114.
[Artikel, refereegranskad vetenskaplig]

Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims. Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 mu m, 100 mu m, and 160 mu m simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust.

Nyckelord: infrared: stars, circumstellar matter, stars: individual: HIP 17439, multiband imaging photometer, spitzer-space-telescope, icy planet, formation, main-sequence stars, solar-type stars, kuiper-belt, beta-pictoris, nearby stars, circumstellar material, absolute, calibration

Denna post skapades 2014-03-14. Senast ändrad 2015-07-10.
CPL Pubid: 194998


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Radioastronomi och astrofysik (2010-2017)


Astronomi, astrofysik och kosmologi

Chalmers infrastruktur