CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multi-layer perceptron training algorithms for pattern recognition of myoelectric signals

L.M.D. Khong ; T.J. Gale ; D. Jiang ; J.C. Olivier ; Max Jair Ortiz-Catalan (Institutionen för signaler och system, Medicinska signaler och system)
BMEiCON 2013 - 6th Biomedical Engineering International Conference (2013)
[Konferensbidrag, refereegranskat]

A challenge in using myoelectric signals in control of motorised prostheses is achieving effective signal pattern recognition and robust classification of intended motions. In this paper, the performance of Matlab's Multi-layer Perceptron (MLP) backpropogation training algorithms in motion classification were assessed. The test and evaluation platform used was 'BioPatRec', a Matlab-based open-source prosthetic control development environment, together with algorithms sourced from Matlab's neural network toolbox. The algorithms were used to interpret multielectrode myoelectric signals for motion classification, with the aim of finding the best performing algorithm and network model. The results showed that Matlab's trainlm and trainrp algorithms could achieve a higher accuracy than other tested MLP training algorithms (94.13 ± 0.037% and 91.09 ± 0.047%, respectively). Discussion of these results investigates significant features to obtain the highest performance.

Nyckelord: myoelectric signals , neural network , pattern recognition , prosthetic control

Article number 6687665.

Denna post skapades 2014-02-27. Senast ändrad 2014-09-02.
CPL Pubid: 194217


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Medicinska signaler och system


Elektroteknik och elektronik

Chalmers infrastruktur