CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Finite-blocklength analysis of the ARQ-protocol throughput over the Gaussian collision channel

Rahul Devassy (Institutionen för signaler och system, Kommunikationssystem) ; Giuseppe Durisi (Institutionen för signaler och system, Kommunikationssystem) ; Petar Popovski ; Erik G. Ström (Institutionen för signaler och system, Kommunikationssystem)
6th International Symposium on Communications, Control and Signal Processing 2014 p. 173-177. (2014)
[Konferensbidrag, refereegranskat]

We present a finite-blocklength analysis of the throughput and the average delay achievable in a wireless system where i) several uncoordinated users transmit short coded packets, ii) interference is treated as noise, and iii) 1-bit feedback from the intended receivers enables the use of a simple automatic repeat request (ARQ) protocol. Our analysis exploits the recent results on the characterization of the maximum coding rate at finite blocklength and finite block-error probability by Polyanskiy, Poor, and Verdu ́ (2010), and by Yang et al. (2013). For a given number of information bits, we determine the coded-packet size that maximize the per-user throughput and minimize the average delay. Our numerical results indicate that, when optimal codes are used, very short coded packets (of length between 50 to 100 channel uses) yield significantly lower average delay at an almost negligible throughput loss, compared to longer coded packets.

Article number 6877843

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-02-26. Senast ändrad 2015-01-15.
CPL Pubid: 194153


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem (1900-2017)


Informations- och kommunikationsteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Bounds on the maximum coding rate of multiple-access channels and feedback channels