CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

Mikaela Lindgren (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; Itai Panas (Institutionen för kemi- och bioteknik, Oorganisk miljökemi)
Beilstein Journal of Nanotechnology (2190-4286). Vol. 5 (2014), p. 195–201.
[Artikel, refereegranskad vetenskaplig]

Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE), where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

Nyckelord: confinement; corrosion; DFT; electro-catalysis; hydrogen evolution



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-02-24. Senast ändrad 2016-03-22.
CPL Pubid: 194114

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Oorganisk miljökemi (2005-2014)

Ämnesområden

Energi
Materialvetenskap
Nanovetenskap och nanoteknik
Hållbar utveckling
Materialkemi
Elektrokemi
Kvantkemi
Katalys
Korrosionsteknik
Funktionella material
Nanoteknik

Chalmers infrastruktur