CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The geometry behind double geometry

Martin Cederwall (Institutionen för fundamental fysik)
Journal of High Energy Physics (1029-8479). Vol. 2014 (2014), 9, p. article no 70.
[Artikel, refereegranskad vetenskaplig]

Generalised diffeomorphisms in double field theory rely on an O(d,d) structure defined on tangent space. We show that any (pseudo-)Riemannian metric on the doubled space defines such a structure, in the sense that the generalised diffeomorphisms defined using such a metric form an algebra, provided a covariant section condition is fulfilled. Consistent solutions of the section condition gives further restrictions. The case previously considered corresponds to a flat metric. The construction makes it possible to apply double geometry to a larger class of manifolds. Examples of curved defining metrics are given. We also comment on the role of the defining geometry for the symmetries of double field theory, and on the continuation of the present construction to the U-duality setting.

Denna post skapades 2014-02-12. Senast ändrad 2014-12-05.
CPL Pubid: 193641


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fundamental fysik (2005-2015)


Relativitetsteori, gravitation

Chalmers infrastruktur