CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A hierarchy of dynamic equations for solid isotropic circular cylinders

Hossein Abadikhah (Institutionen för tillämpad mekanik, Dynamik) ; Peter D. Folkow (Institutionen för tillämpad mekanik, Dynamik)
Wave motion (0165-2125). Vol. 51 (2014), 2, p. 206-221.
[Artikel, refereegranskad vetenskaplig]

This work considers homogeneous isotropic circular cylinders adopting a power series expansion method in the radial coordinate. Equations of motion together with consistent sets of end boundary conditions are derived in a systematic fashion up to arbitrary order using a generalized Hamilton’s principle. Time domain partial differential equations are obtained for longitudinal, torsional, and flexural modes, where these equations are asymptotically correct to all studied orders. Numerical examples are presented for different sorts of problems, using exact theory, the present series expansion theories of different order, and various classical theories. These results cover dispersion curves, eigenfrequencies and the corresponding displacement and stress distributions, as well as fix frequency motion due to prescribed end displacement or lateral distributed forces. The results illustrate that the present approach may render benchmark solutions provided higher order truncations are used, and act as engineering cylinder equations using low order truncation.



Denna post skapades 2014-02-06. Senast ändrad 2016-08-18.
CPL Pubid: 193563

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik

Ämnesområden

Matematisk fysik
Fastkroppsmekanik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Dynamic higher order equations for structural elements


Dynamic higher order equations