### Skapa referens, olika format (klipp och klistra)

**Harvard**

Shi, G., Sou, K., Sandberg, H. och Johansson, K. (2014) *A graph-theoretic approach on optimizing informed-node selection in multi-agent tracking control*.

** BibTeX **

@article{

Shi2014,

author={Shi, G. D. and Sou, Kin Cheong and Sandberg, H. and Johansson, K. H.},

title={A graph-theoretic approach on optimizing informed-node selection in multi-agent tracking control},

journal={Physica D-Nonlinear Phenomena},

issn={0167-2789},

volume={267},

pages={104-111},

abstract={A graph optimization problem for a multi-agent leader follower problem is considered. In a multi-agent system with n followers and one leader, each agent's goal is to track the leader using the information obtained from its neighbors. The neighborhood relationship is defined by a directed communication graph where k agents, designated as informed agents, can become neighbors of the leader. This paper establishes that, for any given strongly connected communication graph with k informed agents, all agents will converge to the leader. In addition, an upper bound and a lower bound of the convergence rate are obtained. These bounds are shown to explicitly depend on the maximal distance from the leader to the followers. The dependence between this distance and the exact convergence rate is verified by empirical studies. Then we show that minimizing the maximal distance problem is a metric k-center problem in classical combinatorial optimization studies, which can be approximately solved. Numerical examples are given to illustrate the properties of the approximate solutions. (C) 2013 Elsevier B.V. All rights reserved.},

year={2014},

keywords={Multi-agent systems, Leader-follower models, Convergence rate, Structure, optimization, NETWORKS, ALGORITHMS, CONSENSUS, SYSTEMS, LEADER, AGENTS, COORDINATION, CONTROLLABILITY, COMMUNITY, TOPOLOGY },

}

** RefWorks **

RT Journal Article

SR Electronic

ID 193415

A1 Shi, G. D.

A1 Sou, Kin Cheong

A1 Sandberg, H.

A1 Johansson, K. H.

T1 A graph-theoretic approach on optimizing informed-node selection in multi-agent tracking control

YR 2014

JF Physica D-Nonlinear Phenomena

SN 0167-2789

VO 267

SP 104

OP 111

AB A graph optimization problem for a multi-agent leader follower problem is considered. In a multi-agent system with n followers and one leader, each agent's goal is to track the leader using the information obtained from its neighbors. The neighborhood relationship is defined by a directed communication graph where k agents, designated as informed agents, can become neighbors of the leader. This paper establishes that, for any given strongly connected communication graph with k informed agents, all agents will converge to the leader. In addition, an upper bound and a lower bound of the convergence rate are obtained. These bounds are shown to explicitly depend on the maximal distance from the leader to the followers. The dependence between this distance and the exact convergence rate is verified by empirical studies. Then we show that minimizing the maximal distance problem is a metric k-center problem in classical combinatorial optimization studies, which can be approximately solved. Numerical examples are given to illustrate the properties of the approximate solutions. (C) 2013 Elsevier B.V. All rights reserved.

LA eng

DO 10.1016/j.physd.2013.07.014

LK http://dx.doi.org/10.1016/j.physd.2013.07.014

OL 30