CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A graph-theoretic approach on optimizing informed-node selection in multi-agent tracking control

G. D. Shi ; Kin Cheong Sou (Institutionen för matematiska vetenskaper, matematik) ; H. Sandberg ; K. H. Johansson
Physica D-Nonlinear Phenomena (0167-2789). Vol. 267 (2014), p. 104-111.
[Artikel, refereegranskad vetenskaplig]

A graph optimization problem for a multi-agent leader follower problem is considered. In a multi-agent system with n followers and one leader, each agent's goal is to track the leader using the information obtained from its neighbors. The neighborhood relationship is defined by a directed communication graph where k agents, designated as informed agents, can become neighbors of the leader. This paper establishes that, for any given strongly connected communication graph with k informed agents, all agents will converge to the leader. In addition, an upper bound and a lower bound of the convergence rate are obtained. These bounds are shown to explicitly depend on the maximal distance from the leader to the followers. The dependence between this distance and the exact convergence rate is verified by empirical studies. Then we show that minimizing the maximal distance problem is a metric k-center problem in classical combinatorial optimization studies, which can be approximately solved. Numerical examples are given to illustrate the properties of the approximate solutions. (C) 2013 Elsevier B.V. All rights reserved.

Nyckelord: Multi-agent systems, Leader-follower models, Convergence rate, Structure, optimization, NETWORKS, ALGORITHMS, CONSENSUS, SYSTEMS, LEADER, AGENTS, COORDINATION, CONTROLLABILITY, COMMUNITY, TOPOLOGY



Denna post skapades 2014-02-04. Senast ändrad 2014-09-29.
CPL Pubid: 193415

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur