CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method

Erik Burman ; Peter Hansbo (Institutionen för matematiska vetenskaper, matematik)
Applied Numerical Mathematics (0168-9274). Vol. 62 (2012), 4, p. 328-341.
[Artikel, refereegranskad vetenskaplig]

We extend the classical Nitsche type weak boundary conditions to a fictitious domain setting. An additional penalty term, acting on the jumps of the gradients over element faces in the interface zone, is added to ensure that the conditioning of the matrix is independent of how the boundary cuts the mesh. Optimal a priori error estimates in the H-1- and L-2-norms are proved as well as an upper bound on the condition number of the system matrix.

Nyckelord: Interior penalty, Fictitious domain, Finite element



Denna post skapades 2014-01-20. Senast ändrad 2016-08-15.
CPL Pubid: 192874

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur