CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Generalised Moonshine and Holomorphic Orbifolds

Daniel Persson (Institutionen för fundamental fysik) ; Roberto Volpato ; Matthias Gaberdiel
Proceedings of Symposia in Pure Mathematics - Conference on String-Math 2012 (2324-707X). Vol. 90 (2015), p. 73-86.
[Konferensbidrag, refereegranskat]

Generalised moonshine is reviewed from the point of view of holomorphic orbifolds, putting special emphasis on the role of the third cohomology group H^3(G, U(1)) in characterising consistent constructions. These ideas are then applied to the case of Mathieu moonshine, i.e. the recently discovered connection between the largest Mathieu group M_24 and the elliptic genus of K3. In particular, we find a complete list of twisted twining genera whose modular properties are controlled by a class in H^3(M_24, U(1)), as expected from general orbifold considerations.

Denna post skapades 2014-01-15. Senast ändrad 2016-07-04.
CPL Pubid: 192460


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fundamental fysik (2005-2015)


Algebra och geometri
Diskret matematik
Matematisk fysik

Chalmers infrastruktur