CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators

S.R. Sani ; J.M. Persson ; S.M. Mohseni ; Yevgen Pogoryelov ; Pranaba Muduli Kishor ; A.J. Eklund ; G. Malm ; Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik) ; Alexandre Dmitriev (Institutionen för teknisk fysik, Bionanofotonik) ; Johan Åkerman
Nature Communications (2041-1723). Vol. 4 (2013),
[Artikel, refereegranskad vetenskaplig]

Spin-torque oscillators offer a unique combination of nanosize, ultrafast modulation rates and ultrawide band signal generation from 100 MHz to close to 100 GHz. However, their low output power and large phase noise still limit their applicability to fundamental studies of spin-transfer torque and magnetodynamic phenomena. A possible solution to both problems is the spin-wave-mediated mutual synchronization of multiple spin-torque oscillators through a shared excited ferromagnetic layer. To date, synchronization of high-frequency spin-torque oscillators has only been achieved for two nanocontacts. As fabrication using expensive top-down lithography processes is not readily available to many groups, attempts to synchronize a large number of nanocontacts have been all but abandoned. Here we present an alternative, simple and cost-effective bottom-up method to realize large ensembles of synchronized nanocontact spin-torque oscillators. We demonstrate mutual synchronization of three high-frequency nanocontact spin-torque oscillators and pairwise synchronization in devices with four and five nanocontacts. © 2013 Macmillan Publishers Limited. All rights reserved.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2014-01-06. Senast ändrad 2017-10-03.
CPL Pubid: 191212


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fysik (GU) (GU)
Institutionen för teknisk fysik, Bionanofotonik (2007-2015)


Nanovetenskap och nanoteknik

Chalmers infrastruktur