CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Topological optimization of the evaluation of finite element matrices

R.C. Kirby ; Anders Logg (Institutionen för matematiska vetenskaper, matematik) ; L. Ridgway Scott ; A.R. Terrel
SIAM Journal on Scientific Computing (1064-8275). Vol. 28 (2006), 1, p. 224-240.
[Artikel, refereegranskad vetenskaplig]

We present a topological framework for finding low-flop algorithms for evaluating element stiffness matrices associated with multilinear forms for finite element methods posed over straight-sided affine domains. This framework relies on phrasing the computation on each element as the contraction of each collection of reference element tensors with an element-specific geometric tensor. We then present a new concept of complexity-reducing relations that serve as distance relations between these reference element tensors. This notion sets up a graph-theoretic context in which we may find an optimized algorithm by computing a minimum spanning tree. We present experimental results for some common multilinear forms showing significant reductions in operation count and also discuss some efficient algorithms for building the graph we use for the optimization. © 2006 Society for Industrial and Applied Mathematics.

Nyckelord: Finite element , Minimum spanning tree , Optimized algorithm , Variational form



Denna post skapades 2014-01-05. Senast ändrad 2014-09-29.
CPL Pubid: 191161

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik
Beräkningsmatematik

Chalmers infrastruktur