CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optimizing the evaluation of finite element matrices

R.C. Kirby ; M.G. Knepley ; Anders Logg (Institutionen för matematiska vetenskaper, matematik) ; L.R. Scott
SIAM Journal on Scientific Computing (1064-8275). Vol. 27 (2006), 3, p. 741-758.
[Artikel, refereegranskad vetenskaplig]

Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes operators. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two pairs. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising. © 2005 Society for Industrial and Applied Mathematics.

Nyckelord: Compiler , Finite element , Variational form



Denna post skapades 2014-01-05. Senast ändrad 2014-09-29.
CPL Pubid: 191158

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik
Beräkningsmatematik

Chalmers infrastruktur