CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multi-adaptive time integration

Anders Logg (Institutionen för beräkningsmatematik)
Applied Numerical Mathematics (0168-9274). Vol. 48 (2004), 3-4, p. 339-354.
[Artikel, refereegranskad vetenskaplig]

Time integration of ODEs or time-dependent PDEs with required resolution of the fastest time scales of the system, can be very costly if the system exhibits multiple time scales of different magnitudes. If the different time scales are localised to different components, corresponding to localisation in space for a PDE, efficient time integration thus requires that we use different time steps for different components. We present an overview of the multi-adaptive Galerkin methods mcG(q) and mdG(q) recently introduced in a series of papers by the author. In these methods, the time step sequence is selected individually and adaptively for each component, based on an a posteriori error estimate of the global error. The multi-adaptive methods require the solution of large systems of nonlinear algebraic equations which are solved using explicit-type iterative solvers (fixed point iteration). If the system is stiff, these iterations may fail to converge, corresponding to the well-known fact that standard explicit methods are inefficient for stiff systems. To resolve this problem, we present an adaptive strategy for explicit time integration of stiff ODEs, in which the explicit method is adaptively stabilised by a small number of small, stabilising time steps. © 2003 IMACS. Publised by Elsevier B.V. All rights reserved.

Nyckelord: Adaptivity , Error control , Explicit , Multi-adaptivity , Stiffness



Denna post skapades 2014-01-05. Senast ändrad 2014-09-29.
CPL Pubid: 191156

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för beräkningsmatematik (2002-2004)

Ämnesområden

Matematik
Beräkningsmatematik

Chalmers infrastruktur