CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Approximate global convergence in imaging of land mines from backscattered data

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; M.V. Klibanov
Applied Inverse Problems, Springer Proceedings in Mathematics & Statistics (Select Contributions from the First Annual Workshop on Inverse Problems, Gothenburg, Sweden, 2-3 June 2011) (2194-1009). Vol. 48 (2013), p. 15-36.
[Konferensbidrag, refereegranskat]

We present new model of an approximate globally convergent method in the most challenging case of the backscattered data. In this case data for the coefficient inverse problem are given only at the backscattered side of the medium which should be reconstructed. We demonstrate efficiency and robustness of the proposed technique on the numerical solution of the coefficient inverse problem in two dimensions with the time-dependent backscattered data. Goal of our tests is to reconstruct dielectrics in land mines which is the special case of interest in military applications. Our tests show that refractive indices and locations of dielectric abnormalities are accurately imaged.



Denna post skapades 2013-12-23. Senast ändrad 2016-06-27.
CPL Pubid: 190459

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur