CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A posteriori error estimates for Fredholm integral equations of the first kind

N. Koshev ; Larisa Beilina (Institutionen för matematiska vetenskaper, matematik)
Applied Inverse Problems, Springer Proceedings in Mathematics & Statistics: 1st Annual Workshop on Inverse Problems (2194-1009). Vol. 48 (2013), p. 75-93.
[Konferensbidrag, refereegranskat]

We consider an adaptive finite element method for the solution of a Fredholm integral equation of the first kind and derive a posteriori error estimates both in the Tikhonov functional and in the regularized solution of this functional. We apply nonlinear results obtained in Beilina et al., (Journal of Mathematical Sciences, 167, 279–325, 2010), Beilina and Klibanov, (Inverse Problems, 26, 045012, 2010), Beilina et al., (Journal of Mathematical Sciences, 172, 449–476, 2011), Beilina and Klibanov, ( Inverse Problems, 26, 125009, 2010), Klibanov et al., (Inverse and Ill-Posed Problems), 19, 83–105, 2011) for the case of the linear bounded operator. We formulate an adaptive algorithm and present experimental verification of our adaptive technique on the backscattered data measured in microtomography.

Denna post skapades 2013-12-23. Senast ändrad 2016-06-27.
CPL Pubid: 190455


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur