CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins

Till B. Puschmann ; Carl Zandén (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Isabell Lebkuechner ; Camille Philippot ; Yolanda de Pablo ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Milos Pekny
Journal of Neurochemistry (0022-3042). Vol. 128 (2014), 6, p. 878–889.
[Artikel, refereegranskad vetenskaplig]

Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a vascular-derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia-inducible proteins released by astrocytes in CNS injuries. It was suggested that HB–EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB-EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB-EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia-like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT-qPCR analysis demonstrated that HB-EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB-EGF-mediated astrocyte response. HB-EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de-differentiation of astrocytes. HB-EGF (heparin-binding EGF-like growth factor) was previously suggested to replace serum, a common and undefined component in primary astrocyte cultures. We show that both in standard 2D and in our newly developed Bioactive3D culture system, HB-EGF affects astrocyte morphology, proliferation, gene/protein expression and leads to partial de-differentiation of astrocytes. Thus, HB-EGF should only be used with caution as a serum replacement in astrocyte cultures.

Nyckelord: 3D cell culture;astrocyte culture;astrocytes;HB-EGF;intermediate filament system

Denna post skapades 2013-12-22. Senast ändrad 2014-06-27.
CPL Pubid: 190397


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering (GU)
Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)



Chalmers infrastruktur