CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Nonlinear Dynamic Model for Visual Object Tracking on Grassmann Manifolds With Partial Occlusion Handling

Zulfiqar H. Khan (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling)
IEEE TRANSACTIONS ON CYBERNETICS (2168-2267). Vol. 43 (2013), 6, p. 2005-2019.
[Artikel, refereegranskad vetenskaplig]

This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

Nyckelord: Bayesian tracking, Grassmann manifolds, man- ifold tracking, nonlinear state-space modeling, online manifold learning, particle filters (PFs), piecewise geodesics, visual object tracking



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-12-18. Senast ändrad 2014-01-09.
CPL Pubid: 189733

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)