CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Statistical decision making for authentication and intrusion detection

Christos Dimitrakakis (Institutionen för data- och informationsteknik, Datavetenskap, Algoritmer (Chalmers)) ; Aikaterini Mitrokotsa (Institutionen för data- och informationsteknik, Nätverk och system (Chalmers) )
8th International Conference on Machine Learning and Applications, ICMLA 2009 p. 409-414. (2009)
[Konferensbidrag, refereegranskat]

User authentication and intrusion detection differ from standard classification problems in that while we have data generated from legitimate users, impostor or intrusion data is scarce or non-existent. We review existing techniques for dealing with this problem and propose a novel alternative based on a principled statistical decision-making view point. We examine the technique on a toy problem and validate it on complex real-world data from an RFID based access control system. The results indicate that it can significantly outperform the classical world model approach. The method could be more generally useful in other decision-making scenarios where there is a lack of adversary data. © 2009 IEEE.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-12-17. Senast ändrad 2015-01-08.
CPL Pubid: 189667

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)