CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Personalized news recommendation with context trees

Florent Garcin ; Christos Dimitrakakis (Institutionen för data- och informationsteknik, Datavetenskap, Algoritmer (Chalmers)) ; Boi Faltings
ACM Recommender Systems Conference, RecSys 2013 (2013)
[Konferensbidrag, refereegranskat]

The proliferation of online news creates a need for altering interesting articles. Compared to other products, however, recommending news has specific challenges: news preferences are subject to trends, users do not want to see multiple articles with similar content, and frequently we have insufficient information to prolfie the reader. In this paper, we introduce a class of news recommendation systems based on context trees. They can provide highquality news recommendations to anonymous visitors based on present browsing behaviour. Using an unbiased testing methodology, we show that they make accurate and novel recommendations, and that they are sufficiently exible for the challenges of news recommendation.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-12-17. Senast ändrad 2015-01-08.
CPL Pubid: 189611