CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Approaching the theoretical depairing current in YBa2Cu3O7-x nanowires

Shahid Nawaz (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Riccardo Arpaia (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Thilo Bauch (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Floriana Lombardi (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik)
Physica C-Superconductivity and Its Applications (0921-4534). Vol. 495 (2013), p. 33-38.
[Artikel, refereegranskad vetenskaplig]

YBa2Cu3O7-x nanowires, with lateral dimensions smaller that 50 nm have been fabricated by a soft etching procedure preserving an Au capping layer on top of the nanostructure. We have obtained YBCO nanowires carrying critical current densities J(c) close to the theoretical depairing limit. The resistive transition and the J(c) as a function of temperature of the Au capped nanostructures have been compared with those where the Au protective layer was subsequently removed. We conclude that the Au capping layer together with the soft etching procedure are instrumental in preserving shape pristine superconducting properties very close to the as grown film. Our results open new perspective for the use of YBCO nanostructures in fundamental studies aiming at shedding light on the mechanism for high critical temperature superconductivity. (C) 2013 Elsevier B.V. All rights reserved.

Nyckelord: High-temperature superconductors, Nanofabrication, Phase slips, superconductivity, transition, films



Denna post skapades 2013-12-16. Senast ändrad 2016-09-14.
CPL Pubid: 189310

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik

Ämnesområden

Fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


YBCO nanowires to study nanoscale ordering in High-Tc Superconductors