CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Sub-10 nm resolution after lift-off using HSQ./PMMA double layer resist

Marcus Rommel ; Bengt Nilsson (Institutionen för mikroteknologi och nanovetenskap, Nanotekniklaboratoriet) ; Piotr Jedrasik (Institutionen för mikroteknologi och nanovetenskap, Nanotekniklaboratoriet) ; Valentina Bonanni (Institutionen för teknisk fysik, Bionanofotonik) ; Alexandre Dmitriev (Institutionen för teknisk fysik, Bionanofotonik) ; Juergen Weis
Microelectronic Engineering (0167-9317). Vol. 110 (2013), p. 123-125.
[Artikel, refereegranskad vetenskaplig]

Hydrogen silesquioxan (HSQ) is a well-investigated negative tone inorganic resist [1,2] which is known for its capabilities for high resolution electron beam lithography (EBL) and its stability against dry etching [3]. In this paper, we introduce a process to create dense structures by EBL utilizing a layer of polymethyl-methacrylate (PMMA) as sacrificial layer beneath a HSQ layer. The sacrificial layer allows a simple lift-off process to remove the HSQ with organic solvents and thus avoids the use of hydrofluoric acid (HF) containing etchants, which is the commonly used HSQ remover [4]. The described double layer resist system allows patterning on substrates that are not HF compatible such as glass or oxide compounds, achieving a high resolution down to the sub-10 nm regime. Despite the use of a double layer resist, this process is applicable for arbitrarily large areas due to the remaining PMMA underneath the HSQ and the avoidance of undercuts.

Nyckelord: Electron beam lithography; HSQJPMMA double layer resist; Sub-10 nm resolution; HF free lift-off; Plasmonics

Denna post skapades 2013-12-02. Senast ändrad 2014-03-27.
CPL Pubid: 188095


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Nanotekniklaboratoriet
Institutionen för teknisk fysik, Bionanofotonik (2007-2015)



Chalmers infrastruktur