CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On parallel solution of linear elasticity problems. Part III: higher order finite elements

Ivar Gustafsson (Institutionen för matematiska vetenskaper, matematik) ; Gunhild Lindskog (Institutionen för matematiska vetenskaper, matematik)
Numerical Linear Algebra with Applications (1070-5325). Vol. 20 (2013), 5, p. 869-887.
[Artikel, refereegranskad vetenskaplig]

This is the third part of a trilogy on parallel solution of the linear elasticity problem. We consider the separate displacement ordering for a plain isotropic problem with full Dirichlet boundary conditions. The parallel solution methods presented in the first two parts of the trilogy are here generalised to higher order by using hierarchical finite elements. We discuss node numberings on regular grids for high degree of parallelism and even processor load as well as the problem of stability of the modified incomplete Cholesky factorisations used. Several preconditioning techniques for the conjugate gradient method are studied and compared for quadratic finite elements. Bounds for the condition numbers of the corresponding preconditioning methods are derived, and computer experiments are performed in order to confirm the theory and give recommendations on the choice of method. The parallel implementation is performed by message passing interface.

Denna post skapades 2013-11-29. Senast ändrad 2016-11-07.
CPL Pubid: 187841


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur