CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Generalized Mathieu Moonshine

Matthias R. Gaberdiel ; Daniel Persson (Institutionen för fundamental fysik, Matematisk fysik) ; Henrik Ronellenfitsch ; Roberto Volpato
Communications in Number Theory and Physics (1931-4523). Vol. 7 (2013), 1, p. 145-223.
[Artikel, refereegranskad vetenskaplig]

The Mathieu twisted twining genera, i.e., the analogues of Norton's generalized Moonshine functions, are constructed for the elliptic genus of K3. It is shown that they satisfy the expected consistency conditions, and that their behaviour under modular transformations is controlled by a 3-cocycle in H-3(M-24, U(1)), just as for the case of holomorphic orbifolds. This suggests that a holomorphic VOA may be underlying Mathieu Moonshine.

Nyckelord: Modular-Invariance, Finite-Group, K3 Surfaces, BPS States, Group M-24; N=4 Dyons, Orbifolds, Symmetry, Algebras

Denna post skapades 2013-11-11. Senast ändrad 2016-07-19.
CPL Pubid: 186413


Institutioner (Chalmers)

Institutionen för fundamental fysik, Matematisk fysik (2005-2013)



Chalmers infrastruktur