CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On the Fully Automatic Construction of a Realistic Head Model for EEG Source Localization

Mahmood Qaiser (Institutionen för signaler och system, Digitala bildsystem och bildanalys) ; Yazdan Shirvany (Institutionen för signaler och system, Signalbehandling) ; Artur Chodorowski (Institutionen för signaler och system, Digitala bildsystem och bildanalys) ; Johanna Gellermann ; Fredrik Edelvik ; Anders Hedström ; Mikael Persson (Institutionen för signaler och system, Signalbehandling)
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Osaka, Japan, 3-7 July 2013 (1557-170X). p. 3331-3334. (2013)
[Konferensbidrag, refereegranskat]

Accurate multi-tissue segmentation of magnetic resonance (MR) images is an essential first step in the construction of a realistic finite element head conductivity model (FEHCM) for electroencephalography (EEG) source localization. All of the segmentation approaches proposed to date for this purpose require manual intervention or correction and are thus laborious, time-consuming, and subjective. In this paper we propose and evaluate a fully automatic method based on a hierarchical segmentation approach (HSA) incorporating Bayesian-based adaptive mean-shift segmentation (BAMS). An evaluation of HSA-BAMS, as well as two reference methods, in terms of both segmentation accuracy and the source localization accuracy of the resulting FEHCM is also presented. The evaluation was performed using (i) synthetic 2D multi-modal MRI head data and synthetic EEG (generated for a prescribed source), and (ii) real 3D T1-weighted MRI head data and real EEG data (with expert determined source localization). Expert manual segmentation served as segmentation ground truth. The results show that HSA-BAMS outperforms the two reference methods and that it can be used as a surrogate for manual segmentation for the construction of a realistic FEHCM for EEG source localization.

Nyckelord: brain, segmentation, EEG



Denna post skapades 2013-10-30. Senast ändrad 2016-09-22.
CPL Pubid: 185904

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system, Digitala bildsystem och bildanalys (1900-2013)
Institutionen för signaler och system, Signalbehandling
Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering (2006-2016)

Ämnesområden

Signalbehandling

Chalmers infrastruktur