CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Heat transfer for falling film evaporation of black liquor up to very high Prandtl numbers

Erik Karlsson (Institutionen för energi och miljö, Värmeteknik och maskinlära) ; Mathias Gourdon (Institutionen för energi och miljö, Värmeteknik och maskinlära) ; Lars Olausson ; Lennart Vamling (Institutionen för energi och miljö, Värmeteknik och maskinlära)
International Journal of Heat and Mass Transfer (0017-9310). Vol. 65 (2013), p. 907-918.
[Artikel, refereegranskad vetenskaplig]

In this study, heat transfer measurements for falling film evaporation were performed up to very high Prandtl numbers, from 10 to 2800. Black liquor, a residual stream from the pulping process, was used as an example of a fluid that can have very high Prandtl numbers. To overcome the problem with fouling, which can be severe for black liquor due to crystal formation at higher concentrations, a new measurement method has been successfully developed which enables reliable measurements. Viscosity was clearly the most important parameter for the heat transfer coefficient, while the specific mass flow rate had a weak and positive dependence. The results were compared with existing heat transfer correlations, but none of them were able to capture the heat transfer behavior of black liquor throughout the whole range of Prandtl numbers. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Nyckelord: Heat transfer, Falling film, Evaporation, High Prandtl numbers, High, viscosity, Black liquor, viscosity, hydrodynamics



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-10-28. Senast ändrad 2016-12-06.
CPL Pubid: 185756

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för energi och miljö, Värmeteknik och maskinlära (2005-2014)

Ämnesområden

Energi
Kemisk energiteknik
Molekylära transportprocesser i kemisk processteknik

Chalmers infrastruktur