CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Lattice Boltzmann Method for the Advection-Diffusion Equation with Neumann Boundary Conditions

Tobias Gebäck (Institutionen för matematiska vetenskaper, matematik ; SuMo Biomaterials) ; Alexey Heintz (Institutionen för matematiska vetenskaper, matematik)
Communications in Computational Physics (1815-2406). Vol. 15 (2014), 2, p. 487-505.
[Artikel, refereegranskad vetenskaplig]

In this paper, we study a lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions on general boundaries. A novel mass conservative scheme is introduced for implementing such boundary con- ditions, and is analyzed both theoretically and numerically. Second order convergence is predicted by the theoretical analysis, and numerical investigations show that the convergence is at or close to the predicted rate. The nu- merical investigations include time-dependent problems and a steady-state diffusion problem for computation of effective diffusion coefficients.

Nyckelord: Lattice Boltzmann, diffusion, advection-diffusion, Neumann boundary condition



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-10-14. Senast ändrad 2017-07-03.
CPL Pubid: 185208

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
SuMo Biomaterials

Ämnesområden

Statistisk fysik
Materialvetenskap
Matematisk analys
Numerisk analys

Chalmers infrastruktur