CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators

Axel Martin Eriksson (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Daniel Midtvedt (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Alexander Croy (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Andreas Isacsson (Institutionen för teknisk fysik, Kondenserade materiens teori)
Nanotechnology (0957-4484). Vol. 24 (2013), 39, p. srt. no. 395702.
[Artikel, refereegranskad vetenskaplig]

We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings.

Nyckelord: electrical readout, membranes

Denna post skapades 2013-10-08. Senast ändrad 2017-08-14.
CPL Pubid: 184909


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)


Den kondenserade materiens fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Nonlinear electromechanics of nanomembranes and nanotubes

There's Plenty of Room in Higher Dimensions - Nonlinear Dynamics of Nanoelectromechanical Systems