CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On Convergence of the Streamline Diffusion and Discontinuous Galerkin Methods for the Multi-Dimensional Fermi Pencil Beam Equation

Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik) ; E. Kazemi
International Journal of Numerical Analysis and Modeling (1705-5105). Vol. 10 (2013), 4, p. 860-875.
[Artikel, refereegranskad vetenskaplig]

We derive error estimates in the L-2 norms, for the streamline diffusion (SD) and discontinuous Galerkin (DG) finite element methods for steady state, energy dependent, Fermi equation in three space dimensions. These estimates yield optimal convergence rates due to the maximal available regularity of the exact solution. Here our focus is on theoretical aspects of the h and hp approximations in both SD and DG settings.

Nyckelord: Fermi equation, particle beam, streamline diffusion, discontinuous Galerkin, stability, convergence, FOKKER-PLANCK SYSTEM, ELLIPTIC PROBLEMS, APPROXIMATION, GOND P, 1986, ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, V19, P519



Denna post skapades 2013-10-04. Senast ändrad 2016-07-13.
CPL Pubid: 184678

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur