CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation

Philippe Tassin (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Lei Zhang ; Rongkuo Zhao ; Aditya Jain ; Thomas Koschny ; Costas M. Soukoulis
Physical Review Letters (0031-9007). Vol. 109 (2012), 18, p. 187401.
[Artikel, refereegranskad vetenskaplig]

Several classical analogues of electromagnetically induced transparency in metamaterials have been demonstrated. A simple two-resonator model can describe their absorption spectrum qualitatively, but fails to provide information about the scattering properties-e.g., transmission and group delay. Here we develop an alternative model that rigorously includes the coupling of the radiative resonator to the external electromagnetic fields. This radiating two-oscillator model can describe both the absorption spectrum and the scattering parameters quantitatively. The model also predicts metamaterials with a narrow spectral feature in the absorption larger than the background absorption of the radiative element. This classical analogue of electromagnetically induced absorption is shown to occur when both the dissipative loss of the radiative resonator and the coupling strength are small. These predictions are subsequently demonstrated in experiments.

Nyckelord: metamaterials, slow light, electromagnetically induced transparency



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-10-02. Senast ändrad 2015-03-05.
CPL Pubid: 184546

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)

Ämnesområden

Nanovetenskap och nanoteknik
Optisk fysik
Den kondenserade materiens fysik
Övrig elektroteknik, elektronik och fotonik

Chalmers infrastruktur