CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Influence of molecular weight and rheological behavior on electrospinning cellulose nanofibers from ionic liquids

Linda Härdelin (Institutionen för kemi- och bioteknik, Polymerteknologi) ; Erik Perzon ; Bengt Hagström (Institutionen för material- och tillverkningsteknik, Polymera material och kompositer) ; P. Walkenstrom ; Paul Gatenholm (Institutionen för kemi- och bioteknik, Polymerteknologi)
Journal of Applied Polymer Science (0021-8995). Vol. 130 (2013), 4, p. 2303-2310.
[Artikel, refereegranskad vetenskaplig]

Dissolving pulp was depolymerized with 2.5M HCl into cellulose fractions with decreasing molecular weight relative to acid treatment time. The cellulose fractions were dissolved at various concentrations in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EmimAc) with co-solvent DMSO at ratio 1 : 1 (w/w) and electrospun. Size exclusion chromatography was used to evaluate the molecular weight distributions and the rheological properties were characterized with a cone-and-plate rheometer. Scanning electron microscope was used to evaluate the fiber morphology, and thereby spinnability. Zero shear viscosity as a function of cellulose concentration show that all the solutions in this study are in the entangled semi-dilute regime; where the polymer concentration is large enough for significant overlap necessary for chain entanglement. However, within the intervals studied, neither cellulose concentration nor molecular weight seems to be decisive for if a solution can be electrospun into fibers or not. It is rather the viscosity of the solution that is decisive for electrospinnability, even though the solution is in the entangled semi-dilute regime.

Nyckelord: electrospinning, cellulose, ionic liquids, viscosity, molecular weight

Denna post skapades 2013-09-12. Senast ändrad 2013-09-12.
CPL Pubid: 183178


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Polymerteknologi (2005-2014)
Institutionen för material- och tillverkningsteknik, Polymera material och kompositer



Chalmers infrastruktur