CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multiwall carbon nanotube/PPC composites: Preparation, structural analysis and thermal stability

C. Barreto ; A. Altskar ; S. Fredriksen ; E. Hansen ; Rodney Rychwalski (Institutionen för material- och tillverkningsteknik, Polymera material och kompositer)
European Polymer Journal (0014-3057). Vol. 49 (2013), 8, p. 2149-2161.
[Artikel, refereegranskad vetenskaplig]

The focus of this report concerns the preparation nanocomposites from poly(propylene carbonate) (PPC) and multiwall carbon nanotubes (MWNTs). A solvent route using tetrahydrofuran, ethoxylated non- ionic surfactants combined with sonication was found to be successful in deagglomerating and dispersing the nanotubes. Transmission electron microscopy revealed highly disentangled and dispersed nanotubes and was supported by the qualitative stability evaluations. The morphology and molecular mobility of the prepared nanocomposites (0.5, 3.0 and 5.0 wt% of nanotubes) were characterized by rheology, microscopy, low-field solid-state nuclear magnetic resonance, and electrical conductivity. The networking of nanotubes was highest with a stearyl alcohol ethoxylate surfactant, and was found to improve with the sonication time. Nanotube percolation was established, both rheologically and electrically, from a filler content of approximately 0.5 wt%. A higher tendency toward particle agglomeration was observed at higher MWNT loadings. Only minor changes in the glass transition temperature were measured presumably due to the presence of solvent and surfactant residues. The thermal stability was marginally improved by increasing the loading and dispersion of the nanotubes, and appeared to be modified by solvent and surfactant residues.

Nyckelord: Nanocomposites, Thermal stability, Poly(propylene carbonate), Solid-state NMR, MWNT



Denna post skapades 2013-09-10. Senast ändrad 2016-07-22.
CPL Pubid: 183013

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)