CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optimisation of MBE growth conditions for InAs quantum dots on (001) GaAs for 1.3 μm luminescence

Fariba Ferdos (Institutionen för mikroelektronik) ; Mahdad Sadeghi (Institutionen för mikroelektronik) ; Qing Xiang Zhao (forskargrupp för fysikalisk elektronik och fotonik) ; Shumin Wang (Institutionen för mikroelektronik) ; Anders Larsson (Institutionen för mikroelektronik)
Journal of Crystal Growth (0022-0248). Vol. 227-228 (2001), p. 1140-5.
[Artikel, refereegranskad vetenskaplig]

We present a study of the optimised growth conditions for InAs quantum dots (QDs) grown on GaAs substrates by solid source molecular beam epitaxy (SSMBE). Growth conditions for best luminescence intensity and linewidth were found within narrow windows of substrate temperature (500-520°C) and nominal InAs layer thickness (3.3-3.7 monolayers). The emission wavelength of such InAs QDs capped by GaAs was around 1.24 ?m. However, this is redshifted to 1.3 ?m or more by capping the InAs QDs with a thin layer of InxGa1-xAs. The results show that both In content and thickness of the capping layer can be used to tune the emission wavelength. Atomic force microscopy images show that the surface recovers to two-dimensional when depositing In0.2Ga0.8As while remaining three-dimensional when depositing In0.4Ga0.6As.

Nyckelord: atomic force microscopy, gallium arsenide, III-V semiconductors, indium compounds, molecular beam epitaxial growth, optimisation, photoluminescence, red shift, semiconductor epitaxial layers, semiconductor growth, semiconductor quantum dots, spectral line breadth, spectral line intensity



Denna post skapades 2006-09-28. Senast ändrad 2016-04-11.
CPL Pubid: 18258

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroelektronik (1995-2003)
forskargrupp för fysikalisk elektronik och fotonik (1997-2004)

Ämnesområden

Halvledarfysik
Fotonik

Chalmers infrastruktur