CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Quantum Optics with Propagating Microwaves in Superconducting Circuits

Io-Chun Hoi (Institutionen för mikroteknologi och nanovetenskap)
Göteborg : Chalmers University of Technology, 2013. ISBN: 978-91-7385-878-6.

We address recent advances in quantum optics with propagating microwaves in superconducting circuits. This research field exploits on the fact that the coupling between a superconducting artificial atom and propagating microwave photons in a one-dimensional (1D) open transmission line can be made strong enough to observe quantum effects, without using any cavity to confine the microwave photons. We embed an artificial atom, a superconducting transmon qubit, in a 1D open transmission line and investigate the scattering properties of coherent microwaves. When an input coherent state, with an average photon number much less than 1, is on resonance with the artificial atom, we observe extinction of up to 99% in the forward propagating field. We observe the strong nonlinearity of the artificial atom and under strong driving we observe the Mollow triplet. We also study the statistics of the reflected and transmitted beams, which are predicted to be nonclassical states. In particular, we demonstrate photon antibunching in the reflected beam by measuring the second-order correlation function. By applying a second control tone, we observe the Autler-Townes splitting and a giant cross-Kerr effect. Furthermore, we demonstrate fast operation of a single-photon router using the Autler-Townes splitting. This device provides important steps towards the realization of a quantum network. This thesis describes the motivation, theoretical background, design, implementation and measurement results.

Nyckelord: quantum optics, microwave photons, superconducting circuits, superconducting artificial atom, qubit, Mollow triplet, antibunching, second-order correlation function, Autler-Townes splitting, cross-Kerr effect, photon router, quantum network, transmon, Josephson junction, SQUID

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-08-23.
CPL Pubid: 182081


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap


Nanovetenskap och nanoteknik

Chalmers infrastruktur

NFL/Myfab (Nanofabrication Laboratory)


Datum: 2013-09-13
Tid: 13:15
Lokal: Kollektorn, MC2
Opponent: Professor Andreas Wallraff, ETH Zurich