CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Ultrafast Spinning of Gold Nanoparticles in Water Using Circularly Polarized Light

Anni Lehmuskero (Institutionen för teknisk fysik, Bionanofotonik) ; Robin Ogier (Institutionen för teknisk fysik, Bionanofotonik) ; Tina Gschneidtner (Institutionen för kemi- och bioteknik, Polymerteknologi) ; Peter Johansson (Institutionen för teknisk fysik, Bionanofotonik) ; Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik)
Nano Letters (1530-6984). Vol. 13 (2013), 7, p. 3129-3134.
[Artikel, refereegranskad vetenskaplig]

Controlling the position and movement of small objects with light is an appealing way to manipulate delicate samples, such as living cells or nanoparticles. It is well-known that optical gradient and radiation pressure forces caused by a focused laser beam enables trapping and manipulation of objects with strength that is dependent on the particles optical properties. Furthermore, by utilizing transfer of photon spin angular momentum, it is also possible to set objects into rotational motion simply by targeting them with a beam of circularly polarized light. Here we show that this effect can set similar to 200 nm radii gold particles trapped in water in 2D by a laser tweezers into rotation at frequencies that reach several kilohertz, much higher than any previously reported light driven rotation of a microscopic object. We derive a theory for the fluctuations in light scattering from a rotating particle, and we argue that the high rotation frequencies observed experimentally is the combined result of favorable optical particle properties and a low local viscosity due to substantial heating of the particles surface layer. The high rotation speed suggests possible applications in nanofluidics, optical sensing, and microtooling of soft matter.

Nyckelord: Optical tweezers, spin angular momentum, optical torque, photothermal effects, hydrodynamics

Denna post skapades 2013-08-15. Senast ändrad 2017-10-03.
CPL Pubid: 181514


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)
Institutionen för kemi- och bioteknik, Polymerteknologi (2005-2014)


Den kondenserade materiens fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Plasmonics with a Twist

Plasmonics with a Twist: from Single Particles to Metasurfaces