CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method

Y. Takano ; K. N. Liou ; Michael Kahnert (Institutionen för rymd- och geovetenskap, Global miljömätteknik och modellering) ; P. Yang
Journal of Quantitative Spectroscopy & Radiative Transfer (0022-4073). Vol. 125 (2013), p. 51-56.
[Artikel, refereegranskad vetenskaplig]

The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m(2)/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., > 6000) and large size parameters (>> 2) in terms of computational efforts.

Nyckelord: Black carbon, Soot, Aggregated aerosol, Geometric optics and surface wave, Rayleigh-Gans-Debye scattering; T-matrix method

Denna post skapades 2013-08-15. Senast ändrad 2014-02-03.
CPL Pubid: 181478


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Global miljömätteknik och modellering (2010-2017)


Astronomi, astrofysik och kosmologi

Chalmers infrastruktur