CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A two-scale finite element formulation of Stokes flow in porous media

Carl Sandström (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Håkan Johansson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 261 (2013), p. 96-104.
[Artikel, refereegranskad vetenskaplig]

Seepage through saturated porous material with an open pore system is modeled as a non-linear Stokes flow through a rigid matrix. Based on variationally consistent homogenization, the resulting macroscale problem becomes a Darcy-type flow. The prolongation of the Darcy flow fulfills a macrohomogeneity condition, which in a Galerkin context implies a symmetric macroscale problem. The homogenization is of 1st order and periodic boundary conditions are adopted on a Representative Volume Element. A nonlinear nested multiscale technique, in which the subscale problem is used as a constitutive model, is devised. In the presented numerical investigation, the effects of varying physical parameters as well as of the discretization are considered. In particular, it is shown that the two-scale results agree well with those of the fully resolved fine-scale problem.

Nyckelord: Multiscale modeling, Computational homogenization, Stokes flow, Darcy flow, Porous media



Denna post skapades 2013-08-09. Senast ändrad 2015-06-12.
CPL Pubid: 180959

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)

Ämnesområden

Maskinteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


On Computational Homogenization of Fluid-filled Porous Materials