CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Understanding the Role of omega-End Groups and Molecular Weight in the Interaction of PNIPAM with Gold Surfaces

A. Glaria ; M. Beija ; Romain Bordes (Institutionen för kemi- och bioteknik, Teknisk ytkemi ; SuMo Biomaterials) ; M. Destarac ; J. D. Marty
Chemistry of Materials (0897-4756). Vol. 25 (2013), 9, p. 1868-1876.
[Artikel, refereegranskad vetenskaplig]

Modification of nanoparticle surfaces by adsorption or grafting of polymers allows fine control of hybrid materials propertieds for diverse applications. To obtain such a control, it is of paramount importance to understand the impact of the polymer structure on the nature and strength of its interaction with teh nanoparticle. We investigated here a simple model of hybrid materials made of poly(N-isopropylacrylamide) of different molar masses and end groups interacting with gold surfaces. A series of poly(N-isopropylacrylamide) with number-average molar masses ranging from 3700 to 10000 g.mol(-1) were synthesized by reversible addition-fragmentation chain transfer/macromolecular design by interchange of xanthates (RAFT/MADIX): The terminal xanthate group was then reduced into either a thiol or a hydrogen group. Quartz crystal microbalance adsorption/desorption experiments demonstrated that the polymer termini have a strong impact on the mechanism of polymer adsorption on flat gold surface's. These differences in polymer structure have, in return, a Strong influence on the colloidal stability and growth mechanism of nanoparticles directly synthesized in polymer solution. For those properties, the effect of xanthate group compared very favorably to the conventional thiol moiety. Interestingly, the properties of nanohybrids were, poorly affected by the molar mass of the polymer.

Nyckelord: gold nanoparticles, QCM-D, hybrid materials, thermoresponsive polymer, PNIPAM, RAFT/MADIX, chain-transfer polymerization, quartz-crystal microbalance, qcm-d, metal, nanoparticles, protein adsorption, collapsed states, in-situ, poly(n-isopropylacrylamide), dissipation, polymers

Denna post skapades 2013-07-12. Senast ändrad 2016-04-04.
CPL Pubid: 180117


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Teknisk ytkemi (2005-2014)
SuMo Biomaterials


Fysikalisk kemi

Chalmers infrastruktur