CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multi-phonon relaxation and generation of quantum states in a nonlinear mechanical oscillator

Aurora Voje (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Alexander Croy (Institutionen för teknisk fysik, Kondenserade materiens teori) ; Andreas Isacsson (Institutionen för teknisk fysik, Kondenserade materiens teori)
New Journal of Physics (1367-2630). Vol. 15 (2013),
[Artikel, refereegranskad vetenskaplig]

The dissipative quantum dynamics of an anharmonic oscillator is investigated theoretically in the context of carbon-based nano-mechanical systems. In the short-time limit, it is known that macroscopic superposition states appear for such oscillators. In the long-time limit, single- and multi-phonon dissipation lead to decoherence of the non-classical states. However, at zero temperature, as a result of two-phonon losses the quantum oscillator eventually evolves into a non-classical steady state. The relaxation of this state due to thermal excitations and one-phonon losses is numerically and analytically studied. The possibility of verifying the occurrence of the non-classical state is investigated and signatures of the quantum features arising in a ring-down setup are presented. The feasibility of the verification scheme is discussed in the context of quantum nano-mechanical systems.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-07-08. Senast ändrad 2015-02-11.
CPL Pubid: 179922

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens teori (1900-2015)

Ämnesområden

Nanovetenskap och nanoteknik
Den kondenserade materiens fysik
Teknisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Multi Quanta Relaxation and Nonclassicality of Nonlinear Oscillators