CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Sixth order differential equation for sandwich beam deflection including transverse shear

Magnus Alvelid (Institutionen för tillämpad mekanik, Dynamik)
Composite Structures (0263-8223). Vol. 102 (2013), p. 29-37.
[Artikel, refereegranskad vetenskaplig]

A 6th order differential equation for the dynamic analysis of the deflection of a three-layer sandwich beam with a viscoelastic middle layer is developed. Transverse shear deformation as well as rotational inertia effects of the covering layers are taken into account. The same boundary conditions as in the Euler-Bernoulli case are used for the covering layers, making the method straightforward to use. The material in the viscoelastic layer is modeled using a fractional derivative material model. The parameters of the model are fit to experimental data for a rubber in industrial use. A cantilever beam is analyzed, and it is shown that taking the effects of transverse shear and rotational inertia into account can have a significant effect on the response at the resonances even if length to thickness ratio is over 30 for the covering layers.

Nyckelord: Sixth order differential equation, Sandwich beam, Thick beam theory, Rotational effects, free-vibration, laminated composite, viscoelastic layer, formulation, deformation, andrashekhara k, 1990, composite structures, v14, p269

Denna post skapades 2013-07-04. Senast ändrad 2016-09-23.
CPL Pubid: 179781


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik (1900-2017)


Kompositmaterial och -teknik

Chalmers infrastruktur