CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A CPHD Filter for Tracking With Spawning Models

Malin Lundgren (Institutionen för signaler och system, Signalbehandling) ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; Lars Hammarstrand (Institutionen för signaler och system, Signalbehandling)
IEEE Journal on Selected Topics in Signal Processing (1932-4553). Vol. 7 (2013), 3, p. 496-507.
[Artikel, refereegranskad vetenskaplig]

In some applications of multi-target tracking, appearing targets are suitably modeled as spawning from existing targets. However, in the original formulation of the cardinalized probability hypothesis density (CPHD) filter, this type of model is not supported; instead appearing targets are modeled by spontaneous birth only. In this paper we derive the necessary equations for a CPHD filter for the case when the process model also includes target spawning. For this generalized filter, the cardinality prediction formula might become computationally intractable for general spawning models. However, when the cardinality distribution of the spawning targets is either Bernoulli or Poisson, we derive expressions that are practical and computationally efficient. Simulations show that the proposed filter responds faster to a change in target number due to spawned targets than the original CPHD filter. In addition, the performance of the filter, considering the optimal subpattern assignment (OSPA), is improved when having an explicit spawning model.

Nyckelord: Bayesian methods, filtering theory, recursive estimation, probabilistic data association, hypothesis density filter, spatial, point-processes, multiple targets

Denna post skapades 2013-07-01. Senast ändrad 2017-01-27.
CPL Pubid: 179584


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)



Chalmers infrastruktur