CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Development and evaluation of spatial point process models for epidermal nerve fibers

Viktor Olsbo (Institutionen för matematiska vetenskaper, matematisk statistik) ; M. Myllymaki ; L. A. Waller ; Aila Särkkä (Institutionen för matematiska vetenskaper, matematisk statistik)
Mathematical Biosciences (0025-5564). Vol. 243 (2013), 2, p. 178-189.
[Artikel, refereegranskad vetenskaplig]

We propose two spatial point process models for the spatial structure of epidermal nerve fibers (ENFs) across human skin. The models derive from two point processes, Φb and Φe, describing the locations of the base and end points of the fibers. Each point of Φe (the end point process) is connected to a unique point in Φb (the base point process). In the first model, both Φe and Φb are Poisson processes, yielding a null model of uniform coverage of the skin by end points and general baseline results and reference values for moments of key physiologic indicators. The second model provides a mechanistic model to generate end points for each base, and we model the branching structure more directly by defining Φe as a cluster process conditioned on the realization of Φb as its parent points. In both cases, we derive distributional properties for observable quantities of direct interest to neurologists such as the number of fibers per base, and the direction and range of fibers on the skin. We contrast both models by fitting them to data from skin blister biopsy images of ENFs and provide inference regarding physiological properties of ENFs.

Nyckelord: Angle distribution, Branch length, Cluster process, Epidermal nerve fiber, Marked point process, patterns, framework, networks



Denna post skapades 2013-06-27. Senast ändrad 2014-11-27.
CPL Pubid: 179366

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)

Ämnesområden

Matematik
Biologiska vetenskaper

Chalmers infrastruktur