CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Feature and classifier selection for automatic classification of lesions in dynamic contrast-enhanced MRI of the breast

Yaniv Gal ; Andrew Mehnert (Institutionen för signaler och system) ; Andrew Bradley ; Dominic Kennedy ; Stuart Crozier
Proc. 2009 International Conference on Digital Image Computing: Techniques and Applications (DICTA) p. 132 - 139. (2009)
[Konferensbidrag, refereegranskat]

The clinical interpretation of breast MRI remains largely subjective, and the reported findings qualitative. Although the sensitivity of the method for detecting breast cancer is high, its specificity is poor. Computerised interpretation offers the possibility of improving specificity through objective quantitative measurement. This paper reviews the plethora of such features that have been proposed and presents a preliminary study of the most discriminatory features for dynamic contrast-enhanced MRI of the breast. In particular the results of a feature/classifier selection experiment are presented based on 20 lesions (10 malignant and 10 benign) from 20 routine clinical breast MRI examinations. Each lesion was segmented manually by a clinical radiographer and its diagnostic status confirmed by cytopathology or histopathology. The results show that textural and kinetic, rather than morphometric, features are the most important for lesion classification. They also show that the SVM classifier with sigmoid kernel performs better than other well-known classifiers: Fisher's linear discriminant function, Bayes linear classifier, logistic regression, and SVM with other kernels (distance, exponential, and radial).

Nyckelord: Dynamic contrast enhanced MRI, MRI, breast, classification, features, pattern recognition



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-06-18.
CPL Pubid: 178722

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för signaler och system

Ämnesområden

Livsvetenskaper
Bildanalys
Medicinsk bildbehandling

Chalmers infrastruktur