CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Relaxed image foresting transforms for interactive volume image segmentation

Filip Malmberg ; Ingela Nyström ; Andrew Mehnert (Institutionen för signaler och system) ; Craig Engstrom ; Ewert Bengtsson
Proc. SPIE 7623, Medical Imaging 2010: Image Processing Vol. 7623 (2010),
[Konferensbidrag, refereegranskat]

The Image Foresting Transform (IFT) is a framework for image partitioning, commonly used for interactive segmentation. Given an image where a subset of the image elements (seed-points) have been assigned correct segmentation labels, the IFT completes the labeling by computing minimal cost paths from all image elements to the seed-points. Each image element is then given the same label as the closest seed-point. Here, we propose the relaxed IFT (RIFT). This modified version of the IFT features an additional parameter to control the smoothness of the segmentation boundary. The RIFT yields more intuitive segmentation results in the presence of noise and weak edges, while maintaining a low computational complexity. We show an application of the method to the refinement of manual segmentations of a thoracolumbar muscle in magnetic resonance images. The performed study shows that the refined segmentations are qualitatively similar to the manual segmentations, while intra-user variations are reduced by more than 50%.

Nyckelord: Seeded segmentation, Image Foresting Transform, Interactive segmentation, Minimum cost paths

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-06-18.
CPL Pubid: 178721


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system (1900-2017)


Medicinsk bildbehandling

Chalmers infrastruktur