CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Two non-linear parametric models of enhancement for breast DCE-MRI that can be fitted using linear least squares

Andrew Mehnert (Institutionen för signaler och system) ; Michael Wildermoth ; Stuart Crozier ; Ewert Bengtsson ; Dominic Kennedy
Proc. Intl. Soc. Mag. Reson. Med. 19 (2011) p. 2627. (2011)
[Konferensbidrag, refereegranskat]

The interpretation of dynamic contrast enhanced (DCE) MR images of the breast is predicated on the assessment of tissue enhancement kinetics. Both pharmacokinetic (PK) and empirical parametric (EP) models have been developed to quantify this change in enhancement. The former aim to measure physiologically meaningful parameters while the latter seek to measure the shape of the enhancement curve. Given that different PK models can yield markedly different estimates of the same physiological parameter (because of model assumptions) and that such models need to be fitted using non-linear least squares (NLS) which is in itself problematic (need to specify starting values, convergence issues), EP models remain of interest. Herein we propose two such models—linear-slope [1] and Ricker [2]—which have the advantage that they can be fitted using linear least squares (LS) meaning that fitting is quick and that there is no need to specify initial parameter estimates. Furthermore, if desired, the LS fit can be used to provide parameter estimates for a subsequent NLS fit. The results of an empirical evaluation of the goodness-of-fit (GoF) of these two models relative to the pharmacokinetically-inspired Hayton model [2], and the simplified gamma-variate model [4] are also presented.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2013-06-17. Senast ändrad 2013-09-09.
CPL Pubid: 178715


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system (1900-2017)


Medicinsk bildbehandling

Chalmers infrastruktur