CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Parametric resonance in tunable superconducting cavities

Waltraut Wustmann (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik) ; Vitaly Shumeiko (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik)
Physical Review B. Condensed Matter and Materials Physics (1098-0121). Vol. 87 (2013), 18,
[Artikel, refereegranskad vetenskaplig]

We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

Nyckelord: continuous-variables, squeezed states, quantum-theory, amplification, noise, amplifier, systems

Denna post skapades 2013-06-10. Senast ändrad 2013-06-10.
CPL Pubid: 178110


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Denna publikation är ett resultat av följande projekt:

Solid state systems for quantum information processing (SOLID) (EC/FP7/248629)