CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Evaluation of standard reliability growth models in the context of automotive software systems

Rakesh Rana ; Miroslaw Staron ; Christian Berger ; Jörgen Hansson (Institutionen för data- och informationsteknik, Software Engineering (Chalmers)) ; Martin Nilsson ; Fredrik Törner ; Niklas Mellegård (Institutionen för data- och informationsteknik (Chalmers))
Lecture Notes in Computer Science: 14th International Conference on Product-Focused Software Process Improvement (PROFES), Paphos, CYPRUS, Jun 12-14, 2013 (0302-9743). Vol. 7983 (2013), p. 324-329.
[Konferensbidrag, refereegranskat]

Reliability and dependability of software in modern cars is of utmost importance. Predicting these properties for software under development is therefore important for modern car OEMs, and using reliability growth models (e.g. Rayleigh, Goel-Okumoto) is one approach. In this paper we evaluate a number of standard reliability growth models on a real software system from automotive industry. The results of the evaluation show that models can be fitted well with defect inflow data but certain parameters need to be adjusted manually in order to predict reliability more precisely in late test phases. In this paper we provide recommendations for how to adjust the models and how the adjustments should be used in the development process of software in the automotive domain by investigating data from an industrial project.



Denna post skapades 2013-06-07. Senast ändrad 2016-07-04.
CPL Pubid: 178007

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för data- och informationsteknik (GU) (GU)
Institutionen för data- och informationsteknik, Software Engineering (Chalmers)
Institutionen för data- och informationsteknik (Chalmers)

Ämnesområden

Datorsystem
Inbäddad systemteknik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Defect Prediction & Prevention In Automotive Software Development